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ABSTRACT
Zero-shot singing voice synthesis (SVS), the task to synthe-
size the singing voice of an arbitrary target singer, has gained
increasing attentions in the past few years. Several recently
proposed systems have demonstrated promising results on
this task. However, these systems require detailed musical
features at the frame level as the musical content. To deal
with this issue, we propose a model that performs zero-shot
SVS with only musical score as the musical content condi-
tion. To help model training, we build an acoustic encoder
that extracts linguistic features from audio, and train it with
the lyrics transcription objective. The output of the acoustic
encoder serves as an alternative to the musical score, allowing
the SVS model to learn from weakly labeled data. Results
suggest that the proposed method outperforms baseline semi-
supervised method in both subjective and objective tests.

Index Terms— Singing voice synthesis, zero-shot, semi-
weakly-supervised learning

1. INTRODUCTION

Zero-shot singing voice synthesis (SVS) [1–4] is a task that
aims to synthesize any unseen target singer’s voice. Recent
works on zero-shot SVS have demonstrated promising re-
sults by adopting advanced model architectures from text-to-
speech synthesis (TTS) [5–7] and voice conversion (VC) [8].
Typically, this task is addressed by decomposing the singing
voice into 1) musical content such as phoneme, pitch (f0), and
energy (volume), and 2) singer identity information such as
timbre and pronunciation styles. Models that disentangle the
two pieces of information allow one to synthesize a singing
voice conditioned on any singer by having the singer identity
representation of that singer.

Currently in previous zero-shot SVS works, musical con-
tent needs to be sampled framewisely. In practice, the mu-
sical content is actually a set of frame-level musical features
extracted from a recording of the same song performed by an-
other singer. F0 estimators [9], speech-to-text aligners [10] 1,
and energy computing algorithms are necessary for pre-
processing [1–4]. This approach, however, cannot be directly
applied to the case when no groundtruth recording sung by

1In [1], their SVS model was trained to do this by itself.

Model Musical content Target singer
Score Frame-level features

[11–14] ✓ – One
[15–17] – ✓ Many

[18] ✓ – Many
[1–4] – ✓ Any

Proposed ✓ – Any

Table 1. The comparison of the SVS problem formulation in
this paper with previous work. The musical content column
shows the desired input as the musical content, while the tar-
get singer column shows the number of singers’ voice that can
be synthesized, ranging from one (single-singer SVS), many
(multi-singer SVS) to any (zero-shot SVS).

any singer is available, e.g., when a new song is written. In
this case, one has to manually label musical contents at the
frame level, which is not realistic in practice. This poses a
question that, is it possible to build a zero-shot SVS model
that only requires a musical score (i.e., a note sequence) as
the musical content?

In this paper, we propose the task of zero-shot SVS from
musical score, a new zero-shot SVS task in which the mu-
sical content is only a musical score rather than the frame-
level musical features, while the singer identity condition is
still provided by a reference audio of a target singer. The
main difference between musical score and frame-level mu-
sical features is that musical score is a relatively high-level
representation. It consists of a series of notes that indicate the
pitch, timings, and lyrics that the singer is expected to sing,
and has been widely used in the history of music. However, it
does not strictly define the details of the singing at frame level,
which is usually determined by the singer’s interpretation of
the musical score in the actual performance. Considering the
granularity of the labels, it is much easier for a composer to
create a musical score than frame-level features.

Our model contains a musical score encoder that first pre-
dicts frame-level features from the input musical score, and
then encodes the predicted frame-level musical features. The
main difficulty of training such a model is the lack of training
data. Since the musical score is highly correlated to music
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theory, it requires music experts to label manually or semi-
automatically [19]. This hinders the creation of a large-scale
singing dataset with musical score labels. Inspired by previ-
ous work on SVS [13,18], we introduce an additional acoustic
encoder that extracts linguistic features from the audio, which
serves as an alternative to the musical score. This allows the
model to learn from data without musical score label, which
increases the amount of available training data. Furthermore,
to ensure that the acoustic encoder extracts correct linguis-
tic features, we propose to use automatic lyrics transcription
(ALT) as an auxiliary task. Both subjective and objective re-
sults suggest that the proposed method outperforms the base-
line that does not use the ALT auxiliary task for training.

2. RELATED WORK

Singing voice synthesis (SVS) focuses on generating singing
voice. It can be viewed as the singing version of TTS. How-
ever, unlike TTS that explicitly states that the content input
is the text, the musical content input of a SVS system varies
among previous works, which can be divided into two cat-
egories. The SVS systems in the first category take the pho-
netic, pitch and energy information at frame level as the musi-
cal content [1–3, 15–17, 20], which we refer to as frame-level
musical features. Other SVS systems take only the musical
score 2 as musical content [11–14, 18], which contains a se-
ries of notes. Each note indicates the pitch and lyrics that the
singer is expected to sing within a certain time interval.

As for the input singer identity condition, previous SVS
systems can be divided into three categories. The first cate-
gory is single-singer SVS system that is designed to synthe-
size only one singer’s voice [11–14, 21–23]. The second cat-
egory is multi-singer SVS system, which is designed to gen-
erate a closed set of singers’ voice [15–18]. These systems
take a singer id as the singer identity condition. It controls
which singer’s voice should the SVS system synthesize. The
last category is zero-shot SVS system, which is designed to
synthesize any target singer’s voice [1–4]. It takes a reference
audio as the singer identity condition and extracts singer re-
lated features from it. Then, it synthesizes the singing voice
that has the same singer identity as the reference audio. Ta-
ble 1 shows the comparison of previous works and this work
in terms of the problem formulation.

In our problem formulation, we want to build an SVS
model that can both achieve zero-shot SVS and perform SVS
from musical score. This requires the model to disentangle
musical content from singer identity, which has to learn from
a large-scale and diverse dataset. However, there is a lack
of large-scale paired data of singing voice and musical score,
which poses a challenge that has to be addressed. While there

2Note that the musical score we define here is a rather generalized defini-
tion which is not limited to sheet music. For example, a MIDI file with lyrics
label for each note is also a form of “musical score”. Here we focus on the
granularity of the musical content (either at frame level or note level).

Fig. 1. The diagram of the proposed model in two phases: (a)
During training, by adding an acoustic encoder EA (the blue
block), our model can be trained with either weakly labeled
data or strongly labeled data. (b) During inference, we drop
EA and perform zero-shot SVS from the musical score s.

are previous works that also take musical score as musical
content [11–14,18], since these models were not designed for
zero-shot SVS, they do not suffer from this issue.

However, there are still several SVS works that discussed
the use of weakly-labeled data or unlabeled data for train-
ing SVS models. Bonada and Blaauw [18] proposed to add
an acoustic encoder to map unlabeled audio to the encoding
space of musical content, which serves as an alternative to
musical score. Choi and Nam [13] first trained a phoneme
classifier to provide the phoneme prediction from unlabeled
audio, and then used the phoneme prediction as an alterna-
tive to train an SVS model. In this work, we apply a sim-
ilar method to Bonada and Blaauw [18], but add the ALT
objective to train the acoustic encoder. This objective encour-
ages the acoustic encoder to produce the correct linguistic fea-
tures while eliminating features that are not related to musical
content, i.e., the singer identity information, which helps the
zero-shot SVS model disentangle the two components.

3. PROPOSED METHOD

3.1. Proposed model

As shown in Figure 1, the proposed model contains a musical
score encoder ES , an acoustic encoder EA, a reference en-
coder ER, and a decoder D. It can be trained under two train-
ing modes: 1) strongly labeled data, which contains paired
data of audio and musical score, and 2) weakly labeled data,
which only contains audio and lyrics that are labeled at utter-
ance level. The first mode is the traditional supervised SVS
training approach, which only works when the musical score
is available. On the other hand, the second mode only requires
lyrics label that does not have to be manually aligned with the
audio. This increases the amount of data that can be used for
training.



During training (Figure 1(a)), the model takes either a mu-
sical score s or the log-Mel spectrogram of the groundtruth
audio x as the musical content, and takes the log-Mel spec-
trograms of two reference audios, xr,l and xr,g, as the singer
identity condition. In particular, s contains note labels where
each note is labeled with the onset time, offset time, note
pitch, and lyrics. When s is not available, we directly take the
groundtruth audio x as an alternative to s, which also serves
as the musical content condition to the model (in the weakly
labeled mode). As for the reference audios, xr,g provides the
global singer encoding, while xr,l provides the local features
that are related to singer identity such as the pronunciation
of a certain phoneme, which we refer to as the local singer
encoding. The effectiveness of this multi-reference training
scheme has been proven in previous SVS work [3]. In prac-
tice, we set xr,l to the same as x, and concatenate 5 clips sung
by the same singer as x to form xr,g.

Strongly labeled mode. When the paired data of s and x
are available, we run the model as follows:

zg, zl = ER(xr,g,xr,l) ; (1)
zc, t

′,p′, l′, e′ = ES(s, zg) ; (2)
x′
0,x

′ = D(zc, zg, zl) . (3)

First, ER extracts two sets of singer identity features, zg
and zl, from xr,g and xr,l, respectively. zg serves as the
global singer encoding, while zl serves the local singer en-
coding. Then, ES converts s to the content encoding zc. It
first explicitly predicts four frame-level musical features from
s, including 1) time-lag t′, the differences between the onsets
in the musical score and the actual performance, as introduced
in [11], 2) the phoneme alignment between the phoneme se-
quence extracted from s and the predicted frames, which is
further converted to the framewise phoneme prediction l′, 3)
pitch contour p′, and 4) log-energy contour e′. Then, ES

further encodes these features to form zc. These features are
also optimized by feature prediction losses. Finally, D syn-
thesizes the log-Mel spectrogram x′ from zc, zg, and zl. Sim-
ilar to [24], we treat the last few layers of D as a PostNet, and
also use the output before the PostNet, denoted as x′

0, for op-
timization to speedup model convergence.

Then, suppose the groundtruth log-Mel spectrogram,
time-lag, phoneme alignment, pitch contour, log-energy con-
tour are x, t, l, p, e, respectively, we apply the following loss
functions to optimize the model:

Lr = 0.5× (L2(x′,x) + L2(x′
0,x)) , (4)

Lp = L1(p′,p) , (5)
La = mean(max((L1(l′, l)− 0.25), 0)) , (6)
Le = L1(e′, e) + L1(diff(e′),diff(e)) , (7)
Lt = L1(t′, t) , (8)

Lstrong = Lr + λpLp + λaLa + λeLe + λtLt , (9)

where L2 denotes the L2 loss, L1 denotes the L1 loss, diff de-
notes the difference between adjacent frames. Lp, La, Le, and

Lt serve as the feature prediction losses. By applying these
losses and the log-Mel spectrogram reconstruction loss Lr,
ES is trained to predict both the correct frame-level musical
features and content encoding. As for the alignment loss La,
we give the model a tolerance of 0.25 to allow it to smoothly
transfer from one phoneme to another at the boundary. λp, λa,
λe, and λt are weighting factors, which are set to 1.0, 10.0,
1.0 and 0.1 respectively.

Weakly labeled mode. When the musical score label s
is not available, similar to [18], we employ an acoustic en-
coder EA to map the groundtruth log-Mel spectrogram to the
content encoding space, which serves as an alternative to the
musical score s. We run the model as follows:

zg, zl = ER(xr,g,xr,l) ; (10)
zc, l

′ = EA(x) ; (11)
x′
0,x

′ = D(zc, zg, zl) , (12)

where l′ is the framewise phoneme prediction.
After obtaining x′

0 and x′, it is possible to directly apply
the reconstruction loss on them. However, this does not guar-
antee that zc only contains features related to musical content
and does not contain any singer identity feature. Therefore,
we propose to add a lyrics transcription objective to train the
acoustic encoder. Suppose the lyrics label is lu, we use the
following losses for model optimization:

Lr = 0.5× (L2(x′,x) + L2(x′
0,x)) , (13)

LALT = CTC(l′, lu) , (14)
Lweak = Lr + λALTLALT , (15)

where CTC denotes the CTC loss [25], which serves as the
ALT objective. This encourages EA to produce the correct
linguistic feature and drops the singer identity features. The
entire loss function Lweak is the weighted sum of the recon-
struction loss and the CTC loss. λALT is the weighting factor,
which is set to 1.0 in practice.

Inference. During inference, as shown in Figure 1(b), we
drop EA and perform zero-shot SVS from musical score by
running Equation (1)–(3). Based on the problem definition,
there is only one reference audio available. Therefore, we set
both xr,g and xr,l to the same audio, which we denote as xr.

3.2. Implementation details

The architecture of the proposed model is shown in Figure 2.
In this subsection, we briefly introduce the four main compo-
nents of the model.

Acoustic encoder EA. Figure 2 (a) shows the architecture
of EA. The Conv, Strided conv, Residual conv, Deconv
blocks all consist of two 1-D convolution layers with kernel
size of 5, with group normalization and ReLU activation func-
tion between them. The difference is that the second convo-
lution layer of Strided conv has the stride size of 2, while



Fig. 2. The detailed architecture of the proposed model. “LUT” stands for a trainable lookup table which serves as queries
(the green blocks); “SAP” stands for the self-attentive pooling; “Pos encoding” stands for the positional encoding. Blue blocks
denote trainable building blocks of the model. Grey blocks denote operations without trainable parameters.

Deconv has the stride size of 0.5. The Residual conv block
has a residual connection to the output.

First, x is passed through several convolution and GRU
blocks. The output l′ is viewed as the phoneme prediction.
Then, we apply 1 Conv and 2 Residual conv blocks to en-
code l′. Meanwhile, the pitch contour and log-energy contour
are directly extracted from x. Then, the encoding of these
features are concatenated with the encoding of l′ to form zc.

Musical score encoder ES . Figure 2 (b) shows the archi-
tecture of ES . The musical score s is first passed through an
embedding layer. Then, similar to [11], we apply a time-lag
model to predict the time-lag of each note, and a phoneme
alignment predictor to predict the phoneme alignment. Each
phoneme is modeled by a Gaussian distribution along the tem-
poral axis, whose mean, variance and amplitude are predicted
by the predictor. The phoneme alignment is then normalized
and expanded to the phoneme prediction l′ at frame level. Fi-
nally, we apply one Conv and two Residual conv blocks on
l′ to generate the linguistic features.

As for the pitch contour, first, a pitch encoder processes
the embeddings and zg. Then, a vibrato predictor predicts
the vibrato period and amplitude. Then, a pitch residual pre-
dictor predicts the pitch residual of each frame. We add the
predicted pitch residual by the note pitch to form the pitch
contour. The pitch contour is then encoded by a sinusoidal
positional encoding and 4 linear layers.

Finally, we feed the linguistic features, pitch contour en-
coding and zg to a log-energy predictor to obtain the log-
energy contour, which is then concatenated with the above-
mentioned two features to form zc.

Reference encoder ER. Figure 2 (c) shows the archi-
tecture of ER. First, xr,g is passed through 1 Conv and 2
Res dilated conv blocks. A Res dilated conv contains 3 1-D
convolution blocks with the dilation rate of 1, 2, and 4. Then,
a self-attentive pooling (SAP) layer is applied to generate zg.

Then, xr,l and zg are concatenated and fed into a se-
ries of convolution and GRU layers to extract local features.
Then, similar to [26], we use three trainable lookup tables as
queries. Through a cross-attention module, we condense the
local features to form a fix-dimension local singer encoding
zl := (zl,1, zl,2, zl,3). We adopt such an architecture to re-
duce the computation cost and avoid model overfitting [26],
especially when the duration of xr,l is long.

Decoder D. Figure 2 (d) shows the architecture of D.
The design of D is similar to FragmentVC’s decoder [8]. Tak-
ing zc, zg and zl as the input, the extractor concatenates zc
and zg, and applies a linear layer and a self-attention layer
on it to create the query. Then, it applies a cross-attention
layer to extract the local singer features by setting the key and
value to the corresponding zl,i, where i ∈ (1, 2, 3). These
cross-attention layers encourage the decoder to obtain singer-
related features from zl. Finally, we feed the output of the



third extractor, pitch contour encoding and log-energy con-
tour to several Residual conv blocks, 1-D convolution layers
and Smoother [8] blocks to obtain the output log-Mel spec-
trogram. The last 4 1-D convolution layers are treated as the
PostNet similar to Tacotron 2 [24].

4. EXPERIMENTS

4.1. Datasets

We test the proposed model on Mandarin SVS in a zero-
shot manner. Three datasets are used for training and test-
ing, including the MPOP600 dataset [19], the OpenSinger
dataset [17], and the Musdb-V dataset [1,27]. The MPOP600
dataset contains 10 hours of audio sung by 4 distinct singers
with musical score labels. We segment the audios based on
the rest symbols in the musical score. The OpenSinger dataset
contains 51.8 hours of audio sung by 76 distinct singers with
unaligned lyrics labels. The Musdb-V dataset is the collection
of the Musdb-18 dataset’s vocal tracks [27] in which the si-
lence parts were manually removed [1]. It contains 2.3 hours
of audio sung by 86 singers without musical content labels.

In the experiments, we use the MPOP600 dataset as
strongly labeled data, and the Opensinger dataset as weakly
labeled data. For the MPOP600 dataset, we leave 5 songs of
each singer as the test set. For the OpenSinger dataset, we
select 3 male and 3 female singers and leave their data as the
test set. The Musdb-V dataset is only used for testing.

4.2. Training and testing details

We set the dimension of all hidden layers to 256, and train
the model with the AdamW optimizer with the initial learn-
ing rate of 10−5 and weight decay of 10−9. Similar to [8],
cosine annealing is used for learning rate scheduling, which
decreases the learning rate to 2× 10−6. The model is trained
for 1.2M steps with a batch size of 2 (one strongly labeled
data and one weakly labeled data). The total loss is the un-
weighted sum of Lstrong and Lweak.

As for feature extraction, all the audios are resampled to
24KHz and normalized. The number of Mel bands is set to
80. The frame rate of all acoustic features are set to 200Hz.
The pitch contour is extracted by CREPE [9] 3.

To convert the log-Mel spectrogram back to waveform,
we train a Parallel WaveGAN (PWG) vocoder [28] 4 from
scratch on the OpenSinger training set for 400K steps with the
batch size of 3. All the other hyper-parameters are remained
the same as in the original paper.

During testing, we use the musical scores from the
MPOP600 test set as the musical content condition, and
use the Musdb-V test set and the OpenSinger test set as the
reference audio. We concatenate all the clips with the same

3https://github.com/maxrmorrison/torchcrepe
4https://github.com/kan-bayashi/ParallelWaveGAN

song name and singer name. The average duration of refer-
ence audios is 4.6 minutes for the OpenSinger test set, and
1.4 minutes for the Musdb-V test set. The source code of
our experiments is available at https://github.com/
york135/zero_shot_svs_ASRU2023.

4.3. Baseline and topline systems

To test the effectiveness of the proposed zero-shot SVS
model, several systems are used for comparison, which are
listed as follows:

Proposed. The proposed model trained with the proposed
method discussed in Section 3 and 4.2.

Proposed (w/o ALT). Use the same model as Proposed,
but does not use the ALT loss LALT. This is similar to Bonada
and Blaauw’s work [18] which does not use lyrics labels for
training. We regard this setting as a baseline.

Proposed - local. Similar to Proposed, but only use the
speaker embedding zg. All the cross-attention layers in D are
removed.

Wu et al. (topline). We use Wu et al.’s model [1] as a
topline, which performs zero-shot SVS with a source audio
that provides frame-level musical features.

4.4. Evaluation metrics

To evaluate the performance of zero-shot SVS models, two
main aspects are considered, including 1) the singer identity
similarity between the synthesized audio and the reference au-
dio, and 2) the naturalness of the synthesized audio. In the re-
mainder of this section, we directly refer to these two aspects
as similarity and naturalness.

We conduct both subjective and objective tests. For the
subjective test, in each question group, we provide the sub-
jects with one reference audio and several synthesized audios
generated by different systems. We ask them to rank the two
aspects of the synthesized audios. Then, we convert the rank-
ing data to the preference test results.

For the objective test, we train automatic speaker verifi-
cation (ASV) models to quantify the similarity of the synthe-
sized audio. We first use the ResNetSE34L pretrained model
in [29] to extract fix-dimension features. Then, we train a 3-
layer DNN with hidden dimension of 64 using the NT-Xent
loss [30]. Then, we determine the threshold value that leads
to the equal error rate (EER), and use it as the threshold to
compute the speaker verification acceptance rate (SVAR) [8].
We report both the SVAR and the cosine similarity between
the reference audio and the synthesized audio. In practice,
we train one ASV model for each test dataset. The EER and
threshold are 0.80% and 0.6514 for the OpenSinger test set
model, 12.75% and 0.2957 for the Musdb-V test set model.

Besides the performance of zero-shot SVS, for models
that use ALT loss, we also report the phoneme error rate
(PER) of EA’s prediction on the OpenSinger test set. We use
greedy search to decode the prediction.



Model OpenSinger test Musdb-V test
SVAR Sim SVAR Sim

Proposed 86.7% 0.864 80.9% 0.553
Proposed (w/o ALT) 85.3% 0.836 68.5% 0.443

Proposed - local 43.2% 0.490 42.6% 0.232
Wu et al. (topline) 95.5% 0.928 93.9% 0.753

Table 2. Results of the objective similarity test. Sim denotes
the average cosine similarity. SVAR denotes the speaker veri-
fication acceptance rate [8].

Fig. 3. Results of the subjective test.

4.5. Results

Objective results. Table 2 shows the results in terms of ob-
jective similarity. Among the proposed models, Proposed
performs the best, suggesting that both the use of the ALT
loss and the local singer encoding improve the similarity.

As for the comparison with the topline, Wu et al.’s
model [1] still outperforms the proposed model, showing
that the proposed model still has room of improvement in
terms of similarity. However, based on the results, Proposed
still makes the ASV model believe that the synthesized audio
and reference audio are sung by the same singer in more than
80% of the cases on both datasets in the zero-shot setting,
showing that the proposed model is capable of generating any
target singers’ voice with the guide of the reference audio.

As for the ALT performance, the PER of Proposed is
25.60%, while the PER of Proposed - local is 24.69%. Al-
though the object similarity scores of the two models differ
a lot, we do not observe clear difference between the ALT
performance of their corresponding EA.

Subjective results. Based on the objective results, we se-
lect Proposed, Proposed (w/o ALT) and Wu et al. (topline) for
the subjective test. In this test, we only use the OpenSinger
test set as reference audios. We recruited 19 subjects who

are fluent in Mandarin for the test. Each subject is presented
with 6 question groups. Figure 3 shows the subjective results.
In terms of similarity, Proposed outperforms Proposed (w/o
ALT) significantly (p ≈ 0.003), showing that the use of ALT
loss does help the model learn to imitate unseen singer’s voice
better. For the two other pairs, Wu et al. (topline) is slightly
preferred over both Proposed and Proposed (w/o ALT), but
without statistical significance (p ≈ 0.32 and 0.08 respec-
tively), showing that the proposed model performs similarly
to the topline in terms of similarity.

As for the naturalness, Proposed outperforms Proposed
(w/o ALT) significantly (p ≈ 0.015), showing that the use
of ALT loss also improves the naturalness of the synthesized
audio. We assume that with the use of the ALT loss, EA learns
to produce better zc, which further guides other parts of the
model to learn to synthesize more natural voice. For the two
other pairs, Wu et al. (topline) is preferred significantly over
both Proposed (p ≈ 5× 10−5) and Proposed (w/o ALT) (p ≈
2 × 10−7), showing that the proposed model still has much
room for improvement.

To examine the underlying reason that leads to such re-
sults, we run the Proposed model, but with the groundtruth
frame-level musical features as the musical content, which is
similar to previous work [1–4]. By listening to the results
of the two settings, we found that the audio generated with
the frame-level musical features has higher expressiveness in
terms of pitch fluctuation and word pronunciation. This im-
plies that 1) the proposed task in this work is more challeng-
ing than the zero-shot SVS task in previous work, and 2) in
terms of bridging the information gap between musical score
and frame-level musical features, our model, or more specif-
ically, ES , which is expected to produce the content encod-
ing from musical score, does not achieve it perfectly. Unlike
other components, ES can only be trained using the data with
musical score label, which may be the main reason that leads
to such results. We believe that this reflects the limitation of
this work, and that developing a method to train ES better is
crucial in future work.

5. CONCLUSION

In this paper, we propose the task of zero-shot SVS from mu-
sical score, which generates singing voice of unseen singers
with only musical score as the musical content. By adding
an acoustic encoder and the lyrics transcription loss, the pro-
posed model learns from weakly labeled singing data with
lyrics labels at utterance level efficiently. Experiment results
suggest that the proposed model outperforms the baseline
without the lyrics transcription loss. As a future work, we
would like to work on training a better musical score encoder
that generates the content encoding from the musical score,
which is shown to be a crucial component that limits the
overall performance of the proposed model.
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